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Atomic, Molecular, and Optical (AMO) research at Sussex
University Is devoted to the study of fundamental physics
and quantum effects using the techniques of atomic and

laser physics.
Experimental research in: Theoretical studies:
10 academic staff, (Lecturers +) 4 'Ic':ralgped 1942 - Quantum optics
~10+ Postdocts old atomic gases »+ Quantum metrology

Trapped electrons
Non-linear Photonics
Terahertz technology

~30 PhD students
? Master students
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What is quantum technology?

“Quantum technology is an emerging field of physics and
engineering, which is about creating practical applications ...
based on properties of quantum mechanics ...” Wikipedia



What is quantum technology?

quantum mechanics
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Spatio-temporal evolution of the wave-
function ~ probability distribution
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Quantum technology

ATIMELINE OF QUANTUM COMPUTING

1950s - 1990s 1990s - 2000s 2010s 2015 - 2025 2025 and beyond
Primarily theoretical Establishment of Development of quantum System-level engineering Production use of quantum
research, with limited fundamental mechanisms processors and rudimentary for practical quantum computing systems to solve

physical experimentation with physical apparatus quantum computers computers real-world problems

UK national program in QT: £270 millions 2014-2019

Europe's Quantum Flagship initiative: 1billion for the next 10 years (July 2017)
Quantum information science and tech. in Japan: 1billion in the last 15 years
Quantum Canada: 1billion, last decade alone.

Quantum Computing: Google, Microsoft, IBM, Intel, D-Wave, Riggetti, QuTech,

Bosh, Total, AirBus, Facebook, ...
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Quantum technology

ATIMELINE OF QUANTUM COMPUTING

O

Focus on Quantum Science and Technology Initiatives Around the
World

Rob Thew, University of Geneva, Switzerland

U K na Thomas Jennewein, University of Waterloo, Canada
Masahide Sasaki, National Institute of Information and
Communications Technology, Japan

Quantum Science and Technology

12017)

E u rop‘ The 20th century had two significant scientific revolutions—quantum
physics and information science. Quantum physics has been a
fascinating field of research for over a century and one that, for the

Q u ant most part, has been seen as a complex and difficult to understand
concept. Information science was the reserve of complex and often Photo credit: Shutterstock/Vijay Kumar.

years

abstract mathematics, despite changing the tide of a world war.
Quant Monetheless, their combination has given rise to much of the

information technology around us. These technologies emerged in what is often referred to as the first quantum revolution, from our
improved understanding of quantum physics.

Quantum Computing: Google, Microsoft, IBM, Intel, D-Wave, Riggetti, QuTech, ...

Bosh, Total, AirBus, Facebook, ...



What is quantum technology?

Devices that rely in our understanding of quantum mechanics:
Quantum 1.0

Informatio
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Devices/technology exploits the guantum behaviour of very large ensembles of
subsystems (~ 10%°)



What is quantum technology?

Quantum 2.0 . Generation of devices that exploit controlling individual
systems and their interactions.

Supercond. Processor (IBM)
- readout 1 flux bias readout 2

ﬁ:l N

qubit 1 qubit 2

tunable
coupler
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Phys. Rev. Applied 6, 064007
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Challenges to develop quantum technology

v Many technical challenges:
- low-noise generators
> Improve the yield of fabrication processes
» Slow process to characterise/tuning devices

v Quantum devices have very large number of
configurations, and full numerical studies are
Impossible.

v Quantum devices are highly sensitive to

environmental noise.
% Env. noise L



Challenges to develop quantum technology
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v Quantum devices have very large number of
configurations, and full numerical studies are
Impossible.

v Quantum devices are highly sensitive to

environmental noise.
% Env. noise L

To be continued ...
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Machine Learning
Machine learning: refers to a set of statistical tools for analysis
of large data sets

- It can extract features of large data set.
- Generate new data.

Man

vith glasses

Machine Learning craze motivated by:
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Big data sets from the internet flow
Massiv e computing resources
Good algorithms

Success of AlphaGo
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Machine Learning
3 Flavours

Supervised training

Reinforced learning

Unsupervised training
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Machine Learning
3 Flavours

Ciinaonrsicoad traininm

The ML system (network, Agent) defines a non-linear
function that depends on the data and on a large set
of parameters Q

Training: the process of adjusting the parameters Q to
obtain optimal representation of the data.

This results in an algorithm that:
U

« produces compressed representation of the data.

v Can generate new data that reflect the properties of
W the training one.

COOO00 065 —

Physical system
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Compact representation of quantum states
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Compact representation of quantum states
Cl,‘P
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Compact representation of quantum states

Cl,‘l’
Wave-function of the system: 2" C2,‘P
wi=> CyulBi=|c,,
p=1 :
CzN,lp

0000,

1000/,...[1111 D=2"



Compact representation of quantum states
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Variational parametrisation
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Carleo and Troyer, Science 355, 602 (2017)



Compact representation of quantum states

Variational parametrisation
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Reconstruction/Certification
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Compact representation of quantum states

— O
QO —
L

o o

0001
0011

Tweak W to get identical!

—'Pexp(ﬁ)

10011101

B)5)

= | =
= 5
Dw o
AN
|
I ,m
TN

b

.

ﬁ%ﬁ@ﬁ\u

R %9 _
Vi
1y

b &,
AL AN

74
AWAAN
A

AR
CROSN\g
AR
DI N\
2NN G
.ﬂ.-...ﬁ&‘.. uﬂ’f'ﬂ“

TR\

s

)QuCUMBER

»
github.com/PIQuIL/QuCumber

Nieuwenburg, et al arXiv 1904.08441 (2019)



Reduction of effect of noise
Error correction

LUE S IO
ol A 5
B
0

Noise modifies the

.6. \ g
(0=
[: =
Sy

D :

(w(0)w(T))f=e""

Goal: To protect arbitrary guantum states against deleterious
effects of environmental noise during a period of time T



Reduction of effect of noise
Error correction
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Reduction of effect of noise
Error correction with RL

Reinforced Iearning

Agent State S ;;'

Observation (.); RewTarﬂ Rf Action Af_
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Environmental State l-

MPI — Earlangen, Fosel, et al PRX 8, 031084 (2018)



Reduction of effect of noise
Error correction

Goal: Protect quantum information for

agent (neural network) a given period of time
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Reduction of effect of noise
Error correction

State aware network:
We know the multiqubit state

Z CB’\P ‘ |3> This procedure can be applied to any model

MPI — Earlangen, Fosel, et al PRX 8, 031084 (2018)



Reduction of effect of noise
Error correction

State aware network Event aware network
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The event aware network becomes a controller that
decides on gate sequences depending on measurements

MPI — Earlangen, Fosel, et al PRX 8, 031084 (2018)



ML is a hot-topic in quantum science:

ML achieve better performances than established numerical tools to
study/design Quantum Devices

Studying how the learning process can give insights about quantum physics.
Speeding the process of tuning QD
Estimation model parameters

Error correction schemes

Review

Dunjko and Breigel, Machine Learning & Al in the quantum domain, Rep.
Prog. Phys 81, 074001 (2018)

Learning material

Florian Maquart website, https://machine-learning-for-physicists.org/


https://machine-learning-for-physicists.org/

ML plus Quantum Science

Tyvpe of Algorithm
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Characterisation of quantum devices

Current maps
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Ares' group (Oxford) arXiv 1810.10042 (2018)



Characterisation of quantum devices

Use experimental data to reconstruct full resolution current maps and select
next combination of parameters to measure.

FYYWYYNYY
TRVTTNY

Data Reconstructed current maps

Next set of measurements is selected identifying the regions
with the largest average current gradient
n=1,024

n=512 n=2,048

n=4,096

Ares' group (Oxford) arXiv 1810.10042 (2018)



Characterisation of quantum devices

Training an autoencoder

» Difference +

,i, Latent

Encoder z Decoder
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Training examples Subsample Reconstructions

1

1. Encoder: CNN to build a compact representation of the training examples (Latent set Z).
2. Decoder: Feed with the latent set Z + low resolution sample. Trained to reduced the
difference between the training current map and one reconstruction.

Ares' group (Oxford) arXiv 1810.10042 (2018)
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