Periodic driving in quantum systems

German Sinuco
Department of Physics and Astronomy, University of Sussex, Brighton, UK

Imperial College London, $11^{\text {th }}$ February 2015

Outline

I. Context and this talk
II. Floquet Theory
III. Pumping in 1D systems
IV. Dressed landscapes for cold atoms
V. 2D Band engineering with periodic driving.
VI. Conclusion

I. Context and this talk

Absorption Spectroscopy

State population control and Rabi Oscillations

Garraway and Vitanov (1997)

Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI)

Control of quantum transport by periodic driving

Website of Kazue Kudo, Ochanomizu University

Tailoring of potential landscapes for cold atoms

Fernholz, et al., PRA 75, 063406 (2007)

Bloch-Band Engineering

Mikael C. Rechtsman, et al. Nature 496, 196 (2013)

This talk:
Single particle time-periodic Hamiltonian:

$$
\begin{aligned}
& H(t)=H_{0}+V(t) \\
& H(t)=H(t+T)
\end{aligned}
$$

This talk:
Single particle time-periodic Hamiltonian:

$$
\begin{aligned}
& H(t)=H_{o}+V(t) \\
& H(t)=H(t+T)
\end{aligned}
$$

Not in this talk:

- Decoherence and relaxation
- Many-body effects
- Transient dynamics

II. Floquet theory

Jon Shirley, Phys. Rev. 138, B 979 (1965)
Schrodinger Equation: $\quad i \hbar \partial_{t}|\Phi(t)\rangle=H(t)|\Phi(t)\rangle$

$$
H(t+T)=H(t)
$$

Jon Shirley, Phys. Rev. 138, B 979 (1965)
Schrodinger Equation: $\quad i \hbar \partial_{t}|\Phi(t)\rangle=H(t)|\Phi(t)\rangle$

$$
H(t+T)=H(t)
$$

Bloch Theorem in time domain: $\quad\left|\Phi_{\alpha}(t)\right\rangle=\exp \left(-i \frac{\epsilon_{\alpha} t}{\hbar}\right)\left|\Psi_{\alpha}(t)\right\rangle$

$$
\left|\Psi_{\alpha}(t)\right\rangle=\left|\Psi_{\alpha}(t+T)\right\rangle
$$

Jon Shirley, Phys. Rev. 138, B 979 (1965)
Schrodinger Equation: $\quad i \hbar \partial_{t}|\Phi(t)\rangle=H(t)|\Phi(t)\rangle$

$$
H(t+T)=H(t)
$$

Bloch Theorem in time domain: $\quad\left|\Phi_{\alpha}(t)\right\rangle=\exp \left(-i \frac{\epsilon_{\alpha} t}{\hbar}\right)\left|\Psi_{\alpha}(t)\right\rangle$

$$
\begin{gathered}
\left|\Psi_{\alpha}(t)\right\rangle=\left|\Psi_{\alpha}(t+T)\right\rangle \\
\left(H-i \hbar \partial_{t}\right)\left|\Psi_{\alpha}\right\rangle=\epsilon_{\alpha}\left|\Psi_{\alpha}\right\rangle
\end{gathered}
$$

Jon Shirley, Phys. Rev. 138, B 979 (1965)
Schrodinger Equation: $\quad i \hbar \partial_{t}|\Phi(t)\rangle=H(t)|\Phi(t)\rangle$

$$
H(t+T)=H(t)
$$

Bloch Theorem in time domain: $\quad\left|\Phi_{\alpha}(t)\right\rangle=\exp \left(-i \frac{\epsilon_{\alpha} t}{\hbar}\right)\left|\Psi_{\alpha}(t)\right\rangle$

$$
\begin{gathered}
\left|\Psi_{\alpha}(t)\right\rangle=\left|\Psi_{\alpha}(t+T)\right\rangle \\
\left(H-i \hbar \partial_{t}\right)\left|\Psi_{\alpha}\right\rangle=\epsilon_{\alpha}\left|\Psi_{\alpha}\right\rangle
\end{gathered}
$$

Fourier decomposition: $\quad\left\langle n \mid \Psi_{\alpha}(t)\right\rangle=\sum_{q} C_{\alpha, q}^{n} \exp (i q \omega t)$
$\{|n\rangle$: complete basis of system Hilbert space

$$
\begin{gathered}
\left(H-i \hbar \partial_{t}\right)\left|\Psi_{\alpha}\right\rangle=\epsilon_{\alpha}\left|\Psi_{\alpha}\right\rangle \\
\left\langle n \mid \Psi_{\alpha}(t)\right\rangle=\sum_{q} C_{\alpha, q}^{n} \exp (i q \omega t) \\
H=H_{0}+V(t)
\end{gathered}
$$

$$
\begin{gathered}
\left(H-i \hbar \partial_{t}\right)\left|\Psi_{\alpha}\right\rangle=\epsilon_{\alpha}\left|\Psi_{\alpha}\right\rangle \\
\left\langle n \mid \Psi_{\alpha}(t)\right\rangle=\sum_{q} C_{\alpha, q}^{n} \exp (i q \omega t) \\
H=H_{0}+V(t)
\end{gathered}
$$

Rudner, et al., PRX 3, 031005 (2013)

$$
\begin{gathered}
\left(H-i \hbar \partial_{t}\right)\left|\Psi_{\alpha}\right\rangle=\epsilon_{\alpha}\left|\Psi_{\alpha}\right\rangle \\
\left\langle n \mid \Psi_{\alpha}(t)\right\rangle=\sum_{q} C_{\alpha, q}^{n} \exp (i q \omega t) \\
H=H_{0}+V(t)
\end{gathered}
$$

Rudner, et al., PRX 3, 031005 (2013)

$$
\begin{array}{r}
H_{F}=H_{0} \otimes 1+1 \otimes \hbar \omega \hat{n}+\sum_{n \neq 0} V_{n} \otimes \sigma_{n} \\
V(t)=\sum_{n \neq 0} V_{n} \exp (i n \omega t) \quad \sigma_{n}|m\rangle=|m+n\rangle
\end{array}
$$

Floquet spectrum and the evolution operator

$$
U\left(t_{0}+T, t_{0}\right)\left|\Phi_{\alpha}\left(t_{0}\right)\right\rangle=\left|\Phi_{\alpha}\left(t_{0}+T\right)\right\rangle
$$

Floquet spectrum and the evolution operator

$$
\begin{aligned}
& U\left(t_{0}+T, t_{0}\right)\left|\Phi_{\alpha}\left(t_{0}\right)\right\rangle=\left|\Phi_{\alpha}\left(t_{0}+T\right)\right\rangle \\
& U\left(t_{0}+T, t_{0}\right)\left|\Phi_{\alpha}\left(t_{0}\right)\right\rangle=\exp \left(-i \epsilon_{\alpha} T / \hbar\right)\left|\Phi_{\alpha}\left(t_{0}\right)\right\rangle
\end{aligned}
$$

Floquet spectrum and the evolution operator

$$
\begin{gathered}
U\left(t_{0}+T, t_{0}\right)\left|\Phi_{\alpha}\left(t_{0}\right)\right\rangle=\left|\Phi_{\alpha}\left(t_{0}+T\right)\right\rangle \\
U\left(t_{0}+T, t_{0}\right)\left|\Phi_{\alpha}\left(t_{0}\right)\right\rangle=\exp \left(-i \epsilon_{\alpha} T / \hbar\right)\left|\Phi_{\alpha}\left(t_{0}\right)\right\rangle \\
H_{\text {eff }}=\sum \epsilon_{\alpha}\left|\Psi_{\alpha}\right\rangle\left\langle\Psi_{\alpha}\right| \\
U_{F}=U\left(t_{0}+T, t_{0}\right)=\exp \left(-i H_{e f f} T / \hbar\right)
\end{gathered}
$$

Also:

$$
i \hbar \partial_{t}|\Phi(t)\rangle=H(t)|\Phi(t)\rangle
$$

The time-dependent problem can be also solved approximately by finding a unitary transformation, $\mathrm{U}(\mathrm{t})$, such that the transformed Hamiltonian is dominated by a time-independent component:

Also:

$$
i \hbar \partial_{t}|\Phi(t)\rangle=H(t)|\Phi(t)\rangle
$$

The time-dependent problem can be also solved approximately by finding a unitary transformation, $\mathrm{U}(\mathrm{t})$, such that the transformed Hamiltonian is dominated by a time-independent component:

$$
\bar{H}=U^{\dagger} H(t) U-i \hbar U^{\dagger} \partial_{t} U=H_{0}+\Delta H(t)
$$

Also:

$$
i \hbar \partial_{t}|\Phi(t)\rangle=H(t)|\Phi(t)\rangle
$$

The time-dependent problem can be also solved approximately by finding a unitary transformation, $\mathrm{U}(\mathrm{t})$, such that the transformed Hamiltonian is dominated by a time-independent component:

$$
\bar{H}=U^{\dagger} H(t) U-i \hbar U^{\dagger} \partial_{t} U=H_{0}+\Delta H(t)
$$

- Rotating Wave Approximation (Ramsey, 1956).
- Pegg and Series (1973).
- Magnus Expansion.
- Hemerich (PRA, 2010), Poletti \& Kollath (PRA, 2011)
- Goldman \& Dalibard (arxiv:2014)
- Mintert (PRL,2013)

III. Pumping in 1D systems

In a pump, transport of particles (or fluids) is generated following a periodic deformation of the system parameters.

Transport can occur even under the action of a bias field, e.g. gravity, pressure Example:

Archimedes' screw

Spivak, et al.
Phys. Rev. Lett 82, 608 (1999)

Swites, et al., Science 83, 1905 (1999)

Swites, et al., Science 83, 1905 (1999)

Brower, Buttiker and Avron (late 90's - early 2000's)

Analogue of the Landauer Formula: Current in terms of the scattering matrix Geometric description of charge transport in mesoscopic systems.

Brower, Buttiker and Avron (late 90's early 2000s)
Analogue of the Landauer Formula: Current in terms of the scattering matrix Geometric description of charge transport in mesoscopic systems.

Brower, Buttiker and Avron (late 90's early 2000s)
Analogue of the Landauer Formula: Current in terms of the scattering matrix Geometric description of charge transport in mesoscopic systems.

$$
I \approx \frac{-i \omega e}{4 \pi^{2}} \int_{A} d X_{1} d X_{2}\left[\left(\partial_{X_{1}} S\right) S^{\dagger},\left(\partial_{X_{2}} S\right) S^{\dagger}\right]
$$

Das and Aubin, PRL 103, 123007 (2009)

$$
\begin{array}{c|c|c}
\\
H=\frac{P^{2}}{2 m}+V(x, t) & & \\
V(x, t)=V(x, t+T) & \\
\hline
\end{array}
$$

$$
H=\frac{P^{2}}{2 m}+V(x, t) \quad \stackrel{A}{a}
$$

$$
\begin{aligned}
& \text { (a) } \\
& H=\frac{P^{2}}{2 m}+V(x, t) \\
& V(x, t)=V(x, t+T) \\
& \text { (b) } \\
& x(t)= \pm 1+x_{0} \cos (\omega t \pm \psi / 2) \\
& \text { (c) } \\
& x(t)=x_{0} f(t) \\
& x(t)=x_{0}(\cos (\omega t)+\gamma \cos (2 \omega t-\varphi))
\end{aligned}
$$

Castaneda, Dittrich and GS, JPA 45, 395102 (2012)

$$
V(x, t)=V(x, t+T)
$$

To avoid systematic cancellation due to counter-propagating trajectory pairs related by spatial reflection symmetry, we have to break time-reversal invariance of the potential.

For the single-parameter driving this requires

$$
f\left(-t+t_{0}\right) \neq \pm f(t)
$$

(a)

Transmission and reflection coefficients defined in terms of scattering matrices.

$$
\begin{gathered}
S_{0, n_{\text {out }}}^{\sigma-\sigma}=\left\langle k_{0}\left(E_{0}+n_{\text {out }} \hbar \omega\right)\right|\left(U_{F}\right)^{N}\left|k_{0}\left(E_{0}\right)\right\rangle \\
T^{\sigma,-\sigma}\left(E_{0}\right)=\sum_{n \neq 0}\left|S_{0, n}^{\sigma,-\sigma}\left(E_{0}\right)\right|^{2} \\
I\left(E_{0}\right)=\left(R^{r r}+T^{l r}-R^{l l}-T^{r l}\right)
\end{gathered}
$$

$$
I\left(E_{0}\right)=\left(R^{r r}+T^{l r}-R^{l l}-T^{r l}\right)
$$

QM Current as function of the incoming energy. (a) Floquet (full) vs. adiabatic. (dashed) for slow (black) and fast (red) two parameter driving. (b) Total current for single-parameter driving (full red)

Quantum-Classical correspondence: Transport is a manifestation of the same underlying dynamical mechanism

Quantum-Classical correspondence: Transport is a manifestation of the same underlying dynamical mechanism
IV. Dressed landscapes for cold atoms

Matter-wave interferometry with RF-dressing (T. Schumm, Nat. Phys.(2005))

Atom-chip design of a dressed potential:

- Highly controllable configuration: complex landscapes using simple conductor layouts.
- Large trapping frequencies in close proximity to chip surface.
- Simultaneous trapping of two hyperfine states: Microwave coupling can be used for applications as in Optical lattices.

@ Oxford, PRA 83, 043408 (2011)

Consider an alkali atom slowly moving through a region with inhomogeneous static and AC fields:

$$
H=\frac{\boldsymbol{P}^{2}}{2 m}+m_{F} g_{F} \boldsymbol{B}_{D C} \cdot \hat{\boldsymbol{F}}+m_{F} \boldsymbol{g}_{F} \boldsymbol{B}_{A C} \cdot \hat{\boldsymbol{F}} \cos \omega t
$$

Consider an alkali atom slowly moving through a region with inhomogeneous static and AC fields:

$$
H=\frac{\boldsymbol{P}^{2}}{2 m}+m_{F} \boldsymbol{g}_{F} \boldsymbol{B}_{D C} \cdot \hat{\boldsymbol{F}}+m_{F} \boldsymbol{g}_{F} \boldsymbol{B}_{A C} \cdot \hat{\boldsymbol{F}} \cos \omega t
$$

Perform a local rotation of the axis, such that the static field is aligned with the z-axis. Then move to a rotating frame of reference

$$
U(\boldsymbol{r})=\exp \left(-i \omega t \hat{\boldsymbol{F}}_{z}\right) R_{D C}(\boldsymbol{r})
$$

Consider an alkali atom slowly moving through a region with inhomogeneous static and AC fields:

$$
H=\frac{\boldsymbol{P}^{2}}{2 m}+m_{F} \boldsymbol{g}_{F} \boldsymbol{B}_{D C} \cdot \hat{\boldsymbol{F}}+m_{F} \boldsymbol{g}_{F} \boldsymbol{B}_{A C} \cdot \hat{\boldsymbol{F}} \cos \omega t
$$

Perform a local rotation of the axis, such that the static field is aligned with the z-axis. Then move to a rotating frame of reference

$$
U(\boldsymbol{r})=\exp \left(-i \omega t \hat{\boldsymbol{F}}_{z}\right) R_{D C}(\boldsymbol{r})
$$

x

$$
\begin{gathered}
H=\frac{(\boldsymbol{P}+\boldsymbol{A})^{2}}{2 m}+\left(m_{F} g_{F} B_{D C}-\hbar \omega\right) \hat{F}_{z}+\frac{m_{F} g_{F} B_{A C}}{2} \hat{F}_{x}+ \\
\frac{m_{F} \boldsymbol{g}_{F} B_{A C}}{2}\left(\hat{F}_{x} \cos 2 \omega t-\hat{\hat{F}}_{y} \sin 2 \omega t\right)+m_{F} g_{F} B_{A C}^{z} \hat{F}_{z} \cos \omega t \\
\boldsymbol{A}(\boldsymbol{r})=-i \hbar U(\boldsymbol{r})^{-1}[\nabla U(\boldsymbol{r})]
\end{gathered}
$$

Adiabatic approximation: Neglect the gauge field \boldsymbol{A}.
Rotating Wave Approximation (RWA): neglect the counter rotating term Transverse field only: neglect misaligned fields.

$$
H \approx \frac{\boldsymbol{P}^{2}}{2 m}+\left(m_{F} g_{F} B_{D C}-\hbar \omega\right) \hat{F}_{z}+\frac{m_{F} g_{F} B_{A C}}{2} \hat{F}_{x}
$$

Adiabatic approximation: Neglect the gauge field \boldsymbol{A}.
Rotating Wave Approximation (RWA): neglect the counter rotating term Transverse field only: neglect misaligned fields.

$$
\begin{gathered}
H \approx \frac{\boldsymbol{P}^{2}}{2 m}+\left(m_{F} g_{F} B_{D C}-\hbar \omega\right) \hat{F}_{z}+\frac{m_{F} g_{F} B_{A C}}{2} \hat{F}_{x} \\
\left.H \approx \frac{\boldsymbol{P}^{2}}{2 m}+\sqrt{\left(\left(m_{F} g_{F} B_{D C}-\hbar \omega\right)^{2}+\left(\frac{m_{F} g_{F} B_{A C}}{2}\right)^{2}\right.}\right) \hat{F}_{z}
\end{gathered}
$$

Adiabatic approximation: Neglect the gauge field \boldsymbol{A}.
Rotating Wave Approximation (RWA): neglect the counter rotating term Transverse field only: neglect misaligned fields.

$$
\begin{aligned}
H \approx & \frac{\boldsymbol{P}^{2}}{2 m}+\left(m_{F} g_{F} B_{D C}-\hbar \omega\right) \hat{F}_{z}+\frac{m_{F} g_{F} B_{A C}}{2} \hat{F}_{x} \\
H \approx & \left.\frac{\boldsymbol{P}^{2}}{2 m}+\sqrt{\left(\left(m_{F} g_{F} B_{D C}-\hbar \omega\right)^{2}+\left(\frac{m_{F} g_{F} B_{A C}}{2}\right)^{2}\right.}\right) \hat{F}_{z} \\
& V_{\text {adb }}(r)=m_{F} \sqrt{(\text { Detunning })^{2}+\left(\frac{1}{2} \text { Rabi Frequency }\right)^{2}}
\end{aligned}
$$

Dressed 2D Lattice

Atom-chip design of a dressed 2D periodic potential:

- Highly controllable configuration: complex periodic potential from using a simple conductor layout.
- Large trapping frequencies in close proximity to chip surface.
- Simultaneous trapping of two hyperfine states: Microwave coupling can be used for applications as in Optical lattices.

Resonant driving, Weak RF

III. Dressed Landscapes

Pegg and Series, Proc. R. Soc. Lond.A 332, 281 (1973).

$$
U(t)=\exp \left(-i \omega t \hat{\boldsymbol{F}}_{z}\right)
$$

Pegg and Series, Proc. R. Soc. Lond.A 332, 281 (1973).

Misalignment of the dressing field:

$$
\begin{gathered}
U(t)=\exp \left(-i\left(\left(q_{0}+1\right) \omega t+\frac{\mu_{B} g_{F} B_{A C}^{z}}{\hbar \omega} \sin \omega t\right) \hat{F}_{z}\right) \\
q_{0} \hbar \omega+\mu_{B} g_{F} B_{D C}^{z} \approx 0
\end{gathered}
$$

Resonant driving, Weak RF

III. Dressed Landscapes

Pegg and Series, Proc. R. Soc. Lond.A 332, 281 (1973).

Strong dressing field:

$$
U(t)=\exp \left(-i \omega t \hat{\boldsymbol{F}}_{z}\right)
$$

Pegg and Series, Proc. R. Soc. Lond.A 332, 281 (1973).

Strong dressing field:

$$
\begin{aligned}
& U(t)=U_{1} R_{Y}(\theta) U_{2} \\
& U_{1}(t)=\exp \left(i \omega t \hat{F}_{z}\right)
\end{aligned}
$$

$$
U_{2}(t)=\exp \left(\left.-i\left(2\left(q_{0}+1\right) \omega t+\frac{\mu_{B} g_{F} B_{A C}^{x}}{4 \hbar \omega} \sin \theta \sin 2 \omega t\right) \right\rvert\, \hat{F}_{z}\right.
$$

$$
q_{0} \hbar \omega+\mu_{B} g_{F} B_{D C}^{z} \approx 0
$$

Resonant driving, Weak RF

$$
U(t)=\exp \left(-i \omega t \hat{F}_{z}\right)
$$

$$
\begin{aligned}
& \text { Cles, } \\
& \left.U_{2}(t)=\exp (-i) 2\left(q_{0}+1\right) \omega t+\frac{\mu_{B} g_{F} B_{A C}^{X}}{4 \hbar \omega} \sin \theta \sin 2 \omega t+\frac{\mu_{B} g_{F} B_{A C}^{z}}{\hbar \omega} \cos \theta \sin \omega t\right) \mid \hat{F}_{z} \\
& q_{0} \hbar \omega+\mu_{B} g_{F} B_{D C}^{z} \approx ?
\end{aligned}
$$

Resonant driving, Weak RF

III. Dressed Landscapes

Q: Is there a general procedure to find a frame of reference where the time-dependent effects can be neglected?

$$
U(t)=?
$$

A: Possibly.
Quantum optics: Integrability of the two-level Rabi problem
D. Braak, PRL 107, 100401 (2011)

Floquet-Magnus expansion: Effective Hamiltonian as a power series in $1 / \omega$

Unitary flow in Floquet space: Application of flow equations to periodic Hamiltonian in the interaction picture. PRL 111, 175301 (2013).
IV. 2D Band engineering with periodic driving

Floquet Topological Insulator:
Shining light on conventional insulators produces a system whose effective energy bands have a non-trivial topology. (Linder, Nat. Phys. 7, 490 (2011))

The effective Hamiltonian associated with fast periodic driving of lattice models contains terms with long-range hopping, and can resemble the Haldane Hamiltonian (Demler, PRB (2011)).

$$
H_{e f f}=H_{0}+\frac{1}{\hbar \omega}\left[V_{-1}, V_{1}\right]+\ldots
$$

There have been various attempts to solve this problem:
Homotopy invariant: Demler, PRB (2011)
Winding number: Levin, PRX (2013)
Topological Charges: Jiang, PRL (2011)
But, there are situations where none of these quantities predict correctly the number of edge modes.

One particularly challenging example is the Hofstadter Model where one of the tunneling constants varies periodically (Zhao, PRL, PRA 2014).

What about the entanglement spectrum for FTI?

V. Conclusion

How to extend the theory of quantum pumping to regimes of fast driving and interacting?

Does strong dressing brings new types of dressed potential landscapes?
Can the Floquet spectrum in the bulk determine the number of edge modes in lattice models?

Several applications will be benefit of developing techniques for finding the Floquet operator of time-periodic systems

The Floquet formalism offers a common language for a range dissimilar problems. Thus, developments in one area can be immediately translated/adapted to other situations.

Collaborations

Dr. Aidan Arnold

Resonant driving, Weak RF

III. Dressed Landscapes

Resonant driving, Weak RF

III. Dressed Landscapes

Resonant driving, Weak RF

III. Dressed Landscapes

Resonant driving, Weak RF

Resonant driving, Weak RF

III. Dressed Landscapes

Resonant driving, Weak RF

III. Dressed Landscapes

Pegg and Series 1960, for NMR: strong and misalignment
Combination:
Open question. This is not only to evaluate the potential landscape But also useful to estimate non-adiabatic effects. This last talk cannot be performed straightforwardly using the numerically exact spectrum

Relate to Rabi problem: Bargmann or continued fractions, FloquetMagnus expansion, renormalization

To evaluate the Floquet Hamiltonian

Fast driving \rightarrow Floquet operator:
Change the nature of the system: Galitski
2D lattice...
Open problem: bulk-edge correspondence.
Hyp: Entanglement spectrum

Collaborations

Dr. Aidan Arnold

EPSRC

> Kathryn Burrows,
> University of Sussex, Brighton, UK
> Barry Garraway and
> Aidan Arnold University of Strathclyde, Glasgow, UK

Thomas Dittrich National University of Colombia, Bogota, Colombia. and

Arcesio Castaneda

Resonant driving, strong RF

Resonant driving, Weak RF

Swites, et al., Science 83, 1905 (1999)
D.J. Thouless, Phys. Rev. B 27, 6083 (1983).
Q. Niu and D.J. Thouless, J. Phys. A 17, 2453 (1984).
M. Buttiker, H. Thomas, and A. Pretre, Z. Phys. B 94, 133 (1994).
P.W. Brouwer, Phys. Rev. B 58, R10135 (1998).
F. Zhou, B. Spivak, and B. Altshuler, Phys. Rev. Lett. 82, 608 (1999).
J. Avron et al, Phys. Rev. B 64, R10618 (2000).
M. Moskalets, and M. Buttiker, Phys. Rev. B 66, 035306 (2002).
O. Entin-Wohlman, A. Aharony, and Y. Levinson, Phys. Rev. B 65, 195411 (2002)

