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Nuclear Magnetic Resonance  (NMR)
and Magnetic Resonance Imaging (MRI)

Absorption Spectroscopy
Garraway and Vitanov (1997)

State population control and 
Rabi Oscillations
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Control of quantum transport by periodic driving

Website of Kazue Kudo,  Ochanomizu University

Bloch-Band Engineering

 Mikael C. Rechtsman, et al.  Nature 496, 196 (2013)

Tailoring  of potential landscapes for 
cold atoms

Fernholz,et al., PRA 75, 063406 (2007)
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This talk:

Single particle time-periodic Hamiltonian:

H(t) = H
0
 + V(t)

         H(t) =  H(t+T) 
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This talk:

Single particle time-periodic Hamiltonian:

H(t) = H
0
 + V(t)

         H(t) =  H(t+T) 

Not in this talk:

- Decoherence and relaxation
- Many-body effects
- Transient dynamics



  

 II.  Floquet theory

G. Sinuco, University of Sussex Floquet Theory Imperial College, 11th February 2015
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Jon Shirley, Phys. Rev. 138, B 979 (1965)

iℏ ∂t∣Φ(t )〉=H (t )∣Φ(t )〉Schrodinger Equation:Schrodinger Equation

H (t+ T )=H (t )
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Jon Shirley, Phys. Rev. 138, B 979 (1965)

∣Φα (t) 〉=exp(−i
ϵα t
ℏ

)∣Ψα (t )〉

∣Ψα(t ) 〉=∣Ψα(t+ T ) 〉

Schrodinger Equation:

Bloch Theorem in time domain:

Schrodinger Equation iℏ ∂t∣Φ(t )〉=H (t )∣Φ(t )〉

H (t+ T )=H (t )
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Jon Shirley, Phys. Rev. 138, B 979 (1965)

∣Φα (t) 〉=exp(−i
ϵα t
ℏ

)∣Ψα (t )〉

∣Ψα(t ) 〉=∣Ψα(t+ T ) 〉

(H−i ℏ∂t)∣Ψα 〉=ϵα∣Ψα 〉

Schrodinger Equation:

Bloch Theorem in time domain:

Schrodinger Equation iℏ ∂t∣Φ(t )〉=H (t )∣Φ(t )〉

H (t+ T )=H (t )
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Jon Shirley, Phys. Rev. 138, B 979 (1965)

∣Φα (t) 〉=exp(−i
ϵα t
ℏ

)∣Ψα (t )〉

∣Ψα(t ) 〉=∣Ψα(t+ T ) 〉

〈n∣Ψα(t )〉=∑q
Cα ,q

n exp(i q ω t)

(H−i ℏ∂t)∣Ψα 〉=ϵα∣Ψα 〉

{∣n 〉 }:complete basis of system Hilbert space

Schrodinger Equation:

Bloch Theorem in time domain:

Schrodinger Equation

Fourier decomposition:

iℏ ∂t∣Φ(t )〉=H (t )∣Φ(t )〉

H (t+ T )=H (t )
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(H−i ℏ∂t)∣Ψα 〉=ϵα∣Ψα 〉

H=H 0+ V (t)

〈n∣Ψα(t )〉=∑q
Cα ,q

n exp(i q ω t)
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(H−i ℏ∂t)∣Ψα 〉=ϵα∣Ψα 〉

H=H 0+ V (t)

Rudner, et al., PRX 3, 031005 (2013)

〈n∣Ψα(t )〉=∑q
Cα ,q

n exp(i q ω t)
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(H−i ℏ∂t)∣Ψα 〉=ϵα∣Ψα 〉

H=H 0+ V (t)

H F=H 0⊗1+ 1⊗ℏ ω n̂+ ∑n≠0
V n⊗σn

σn∣m 〉=∣m+ n 〉

Rudner, et al., PRX 3, 031005 (2013)

V (t )=∑n≠0
V n exp(i nω t)

〈n∣Ψα(t )〉=∑q
Cα ,q

n exp(i q ω t)
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U (t0+ T , t0)∣Φα(t0)〉=∣Φα(t0+ T )〉

Floquet spectrum and the evolution operator
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U (t0+ T , t0)∣Φα(t0)〉=∣Φα(t0+ T )〉

U (t0+ T , t0)∣Φα(t0)〉=exp(−i ϵα T / ℏ)∣Φα(t0)〉

Floquet spectrum and the evolution operator
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U (t0+ T , t0)∣Φα(t0)〉=∣Φα(t0+ T )〉

U F=U (t0+ T , t0)=exp (−iH eff T /ℏ)

H eff =∑ ϵα∣Ψα 〉  Ψα∣

U (t0+ T , t0)∣Φα(t0)〉=exp(−i ϵα T / ℏ)∣Φα(t0)〉

Floquet spectrum and the evolution operator
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Also:

The time-dependent problem can be also solved approximately by finding 
a unitary transformation, U(t), such that the transformed Hamiltonian
is dominated by a time-independent component:

                            

iℏ ∂t∣Φ(t )〉=H (t )∣Φ(t )〉
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Also:

The time-dependent problem can be also solved approximately by finding 
a unitary transformation, U(t), such that the transformed Hamiltonian
is dominated by a time-independent component:

                            

H̄ =U † H (t )U −i ℏ U †
∂t U =H 0+ Δ H (t )

iℏ ∂t∣Φ(t )〉=H (t )∣Φ(t )〉
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Also:

The time-dependent problem can be also solved approximately by finding 
a unitary transformation, U(t), such that the transformed Hamiltonian
is dominated by a time-independent component:

● Rotating Wave Approximation (Ramsey, 1956). 
● Pegg and Series (1973).
● Magnus Expansion.
● Hemerich (PRA, 2010), Poletti & Kollath (PRA, 2011)
● Goldman & Dalibard (arxiv:2014)
● Mintert (PRL,2013)

                            

H̄ =U † H (t )U −i ℏ U †
∂t U =H 0+ Δ H (t )

iℏ ∂t∣Φ(t )〉=H (t )∣Φ(t )〉



  

III. Pumping in 1D systems
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In a pump, transport of particles (or fluids) is generated following a periodic
deformation of the system parameters.

Transport can occur even under the action of a bias field, e.g. gravity, pressure

Example: 

Archimedes' screw  
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Spivak, et al.
Phys. Rev. Lett 82, 608 (1999)



  

G. Sinuco, University of Sussex II. Pumping in 1D systems Imperial College, 11th February 2015

X
1

X
2

A I ~ A

P. W. Brouwer ,
Phys. Rev. B 58, 10135(R)  (1998)

Spivak, et al.
Phys. Rev. Lett 82, 608 (1999)
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X
1

X
2

A I ~ A

P. W. Brouwer ,
Phys. Rev. B 58, 10135(R)  (1998)

Swites, et al., Science 83, 1905 (1999)

Spivak, et al.
Phys. Rev. Lett 82, 608 (1999)
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X
1

X
2

A I ~ A

P. W. Brouwer ,
Phys. Rev. B 58, 10135(R)  (1998)

Swites, et al., Science 83, 1905 (1999)

Spivak, et al.
Phys. Rev. Lett 82, 608 (1999)
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Brower, Buttiker and Avron (late 90's - early 2000's)

Analogue of the Landauer Formula: Current in terms of the scattering matrix 
Geometric description of charge transport in mesoscopic systems.
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Brower, Buttiker and Avron (late 90's early 2000s)

Analogue of the Landauer Formula: Current in terms of the scattering matrix 
Geometric description of charge transport in mesoscopic systems.

I≈
−i ω e

4 π
2 ∫A

dX1 dX2 [(∂X1
S)S† ,(∂X2

S)S †
]

X
1

X
2

A
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Brower, Buttiker and Avron (late 90's early 2000s)

Analogue of the Landauer Formula: Current in terms of the scattering matrix 
Geometric description of charge transport in mesoscopic systems.

I≈
−i ω e

4 π
2 ∫A

dX1 dX2 [(∂X1
S)S† ,(∂X2

S)S †
]

X
1

X
2

A

Das and Aubin, PRL 103, 123007 (2009)



  

H =
P2

2m
+ V (x ,t )

V (x , t)=V (x , t+ T )

G. Sinuco, University of Sussex II. Pumping in 1D systems Imperial College, 11th February 2015

x

V (x)



  

H =
P2

2m
+ V (x ,t )

V (x , t)=V (x , t+ T )
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H =
P2

2m
+ V (x ,t )

V (x , t)=V (x , t+ T )

G. Sinuco, University of Sussex II. Pumping in 1D systems Imperial College, 11th February 2015

x (t)=±1+ x0 cos(ω t±ψ/2)

Castaneda, Dittrich and GS, JPA 45, 395102 (2012)

x (t)=x0(cos(ω t)+ γcos(2ω t−ϕ))

x (t)=x0 f (t)



  

H =
P2

2m
+ V (x ,t )

V (x , t)=V (x , t+ T )

G. Sinuco, University of Sussex II. Pumping in 1D systems Imperial College, 11th February 2015

x (t)=±1+ x0 cos(ω t±ψ/2)

x (t)=x0(cos(ω t)+ γcos(2ω t−ϕ))

I (E)=〈(R rr+ T lr−Rl l−T rl)〉arrival time

x (t)=x0 f (t)
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p''
in

(a)

p'
in

p'
out

p''
out

t

x

p'
in

p'
out

p''
in

p'
in

p''
out

To avoid systematic cancellation due to 
counter-propagating trajectory pairs related 
by spatial reflection symmetry, we have to 
break time-reversal invariance of the 
potential.

For the single-parameter driving this 
requires 

f (−t+ t0)≠±f (t)
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Transmission and reflection coefficients defined  in terms of scattering 
matrices. 

I (E0)=(Rrr+ T lr−Rl l−T rl)

S0,nout

σ−σ=〈 k0(E0+ nout ℏ ω)∣(U F)N∣k0(E0) 〉

T σ ,−σ(E0)=∑n≠0
∣S0,n

σ ,−σ(E0)∣
2
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QM Current as function of the incoming energy. (a) Floquet  (full) vs. adiabatic. (dashed)
for slow (black) and fast (red) two parameter driving.  (b) Total current for single-parameter
driving  (full red) 

I (E0)=(Rrr+ T lr−Rl l−T rl)



  

Quantum-Classical correspondence: Transport 
is a manifestation of the same underlying 
dynamical mechanism 
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x

t



  

Quantum-Classical correspondence: Transport 
is a manifestation of the same underlying 
dynamical mechanism 
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x

t



  

IV. Dressed landscapes for cold atoms
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Matter-wave interferometry with RF-dressing 
(T. Schumm, Nat. Phys.(2005))

@ Oxford, PRA 83, 043408 (2011)

Atom-chip design of a dressed potential:

● Highly controllable configuration: complex landscapes using 

simple conductor layouts.

● Large trapping frequencies in close proximity to chip surface.

● Simultaneous trapping of two hyperfine states: Microwave 

coupling can be used for applications as in Optical lattices.
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Consider an alkali atom slowly moving through a region with inhomogeneous
static and AC fields:

H=
P2

2m
+ mF gF BDC⋅F̂+ mF gF BAC⋅F̂ cosω t

z

B
DC

z

x
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Consider an alkali atom slowly moving through a region with inhomogeneous
static and AC fields:

H=
P2

2m
+ mF gF BDC⋅F̂+ mF gF BAC⋅F̂ cosω t

Perform a local rotation of the axis, such that the static field is
aligned with the z-axis. Then move to a rotating
frame of reference

U (r)=exp(−i ω t F̂ z) RDC(r)
z

B
DC

z

x
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Consider an alkali atom slowly moving through a region with inhomogeneous
static and AC fields:

H=
P2

2m
+ mF gF BDC⋅F̂+ mF gF BAC⋅F̂ cosω t

U (r)=exp(−i ω t F̂ z) RDC(r)

H=
(P+ A)2

2m
+ (mF gF BDC−ℏ ω) F̂ z+

mF gF B AC

2
F̂ x+ .

mF gF B AC

2
( F̂ x cos 2ω t ̂−F̂ y sin 2ω t )+ mF gF BAC

z F̂ z cos ω t

A(r)=−i ℏ U (r)−1 [ ∇ U (r)]

z

B
DC

z

x

Perform a local rotation of the axis, such that the static field is
aligned with the z-axis. Then move to a rotating
frame of reference
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z

B
DC

z

x

Adiabatic approximation: Neglect the gauge field A.

Rotating Wave Approximation (RWA): neglect the counter rotating term

Transverse field only: neglect misaligned fields.
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z

B
DC

z

x

H≈
P2

2m
+ (mF gF BDC−ℏω) F̂ z+

mF gF BAC

2
F̂ x

Adiabatic approximation: Neglect the gauge field A.

Rotating Wave Approximation (RWA): neglect the counter rotating term

Transverse field only: neglect misaligned fields.
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z

B
DC

z

x

H≈
P2

2m
+ (mF gF BDC−ℏω) F̂ z+

mF gF BAC

2
F̂ x

H≈
P2

2m
+ √((mF gF BDC−ℏ ω)

2
+ ( mF gF B AC

2 )
2

) F̂ z

Adiabatic approximation: Neglect the gauge field A.

Rotating Wave Approximation (RWA): neglect the counter rotating term

Transverse field only: neglect misaligned fields.
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z

B
DC

z

x

H≈
P2

2m
+ (mF gF BDC−ℏω) F̂ z+

mF gF BAC

2
F̂ x

H≈
P2

2m
+ √((mF gF BDC−ℏ ω)

2
+ ( mF gF B AC

2 )
2

) F̂ z

V adb (r)=mF √( Detunning )
2
+ ( 1

2
Rabi Frequency )

2

Adiabatic approximation: Neglect the gauge field A.

Rotating Wave Approximation (RWA): neglect the counter rotating term

Transverse field only: neglect misaligned fields.



DC 

AC 

z
0
 

G. Sinuco, University of Sussex  III. 2D Lattice  Nottingham 18th December 2014G. Sinuco, University of Sussex  III. Dressed Landscapes Imperial College, 11th February 2015
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Dressed 2D Lattice

Atom-chip design of a dressed 2D periodic potential:

● Highly controllable configuration: complex periodic potential 

from using a simple conductor layout.

● Large trapping frequencies in close proximity to chip surface.

● Simultaneous trapping of two hyperfine states: Microwave 

coupling can be used for applications as in Optical lattices.

G. Sinuco, University of Sussex  III. Dressed Landscapes Imperial College, 11th February 2015



  

y
z

x

Gunther et al. PRA 2005

DC 

AC 
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S
DC
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RF
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B
E

AC 
DC 
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Pegg and Series, Proc. R. Soc. Lond.A 332, 281 (1973).

Misalignment of the dressing field:
z

x
O'

B
DC

 

B
AC,┴

B
AC,║
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Pegg and Series, Proc. R. Soc. Lond.A  332, 281 (1973).

Misalignment of the dressing field:

U (t )=exp(−i ω t F̂ z)

z

x
O'

B
DC

 

B
AC,┴

B
AC,║
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Pegg and Series, Proc. R. Soc. Lond.A 332, 281 (1973).

Misalignment of the dressing field:
z

x
O'

B
DC

 

B
AC,┴

B
AC,║

U (t )=exp (−i ((q0+ 1)ω t+
μB gF BAC

z

ℏω
sin ω t ) F̂ z )

q0 ℏ ω+ μB gF BDC
z ≈0
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Pegg and Series, Proc. R. Soc. Lond.A 332, 281 (1973).

Strong dressing field:
z

x
O'

B
DC

 

B
AC,┴

B
AC,║

U (t )=exp(−i ω t F̂ z)
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Pegg and Series, Proc. R. Soc. Lond.A 332, 281 (1973).

Strong dressing field:
z

x
O'

B
DC

 

B
AC,┴

B
AC,║

U (t )=U 1 RY (θ)U 2

q0 ℏ ω+ μB gF BDC
z ≈0

U 1(t)=exp (i ω t F̂ z )

U 2(t )=exp (−i (2(q0+ 1)ω t+
μB gF B AC

x

4 ℏ ω
sin θsin 2ω t ) ) F̂ z
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Strong dressing + misalignment 

z

x
O'

B
DC

 

B
AC,┴

B
AC,║

U (t )=exp(−i ω t F̂ z)
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Strong dressing + misalignment 

z

x
O'

B
DC

 

B
AC,┴

B
AC,║

U (t )=U 1 RY (θ)U 2

q0 ℏ ω+ μB gF BDC
z ≈?

U 1(t )=exp (i ω t F̂ z )

U 2(t )=exp (−i (2(q0+ 1)ω t+
μB gF B AC

x

4 ℏ ω
sin θsin 2ω t+

μB gF BAC
z

ℏω
cosθ sinω t )) F̂ z
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U (t )=?

Q: Is there a general procedure to find a frame of reference where the time-dependent effects
can be neglected?
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A: Possibly.

   Quantum optics: Integrability of the two-level  Rabi problem 
  D. Braak, PRL 107, 100401 (2011)

   Floquet-Magnus expansion: Effective Hamiltonian as a power series in 1/

  
   Unitary flow in Floquet space:  Application of flow equations to periodic 

 Hamiltonian in the interaction picture. 
                                                   PRL 111, 175301 (2013).



  

IV. 2D Band engineering with periodic 
driving
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Floquet Topological Insulator: 

Shining light on conventional insulators produces a system whose effective 
energy bands have a non-trivial topology.  (Linder, Nat. Phys. 7, 490 (2011))

The effective Hamiltonian associated with fast periodic driving of lattice 
models contains terms with long-range hopping, and can resemble the 
Haldane Hamiltonian (Demler, PRB (2011)). 

J
3

J
1

J
2

J
1

J
2J

3

J
2

J
1

x

y

H eff =H 0+
1

ℏ ω
[V −1 ,V 1]+ ...
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Edge states

Is it possible to count the number
of edge states from the structure of the
energy bands? (bulk-edge correspondence)

H (t)=∑n , m
J x (t)an , m

† an+ 1,m+ h.c

+ J y(t )exp(i αn)an , m
† an , m+ 1+ h.c.

n n+1

m+2

m+1

m
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There have been various attempts to solve this problem:

Homotopy invariant: Demler, PRB (2011)

Winding number: Levin, PRX (2013)

Topological Charges: Jiang, PRL (2011)

But, there are situations where none of these quantities predict correctly
the number of edge modes.

One particularly challenging example is the Hofstadter Model where one of the 
tunneling constants varies periodically (Zhao, PRL, PRA 2014).

What about the entanglement spectrum for FTI?
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How to extend  the theory of quantum pumping to regimes of fast driving and 
interacting?

Does strong dressing brings new types of dressed potential landscapes? 

Can the Floquet spectrum in the bulk determine the number of edge modes
in lattice models? 

Several applications will be benefit of developing techniques for finding 
the Floquet operator of time-periodic systems

The Floquet formalism offers a common language for a range
dissimilar problems. Thus, developments in one area can be immediately 
translated/adapted to other situations.

V. Conclusion
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Pegg and Series 1960, for NMR: strong and misalignment

Combination:

Open question. This is not only to evaluate the  potential landscape
But also useful to estimate non-adiabatic effects. This last talk 
cannot be performed straightforwardly using the numerically exact 
spectrum

Relate to Rabi problem: Bargmann or continued fractions, Floquet-
Magnus expansion, renormalization  

To evaluate the Floquet Hamiltonian
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Fast driving → Floquet operator:

Change the nature of the system: Galitski

2D lattice...

Open problem: bulk-edge correspondence.

Hyp: Entanglement spectrum
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